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Doctoral school : École Doctorale en Mathématiques et Informatique de Marseille (ED184)

1 Scientific Context

COVID-19 pandemic highlights the acute need to develop fast, on-demand therapeutics against pathogens
and health threats. Traditional approaches to drug development are expensive, too slow to react to
pandemics like COVID-19. AI and ML tools on the other hand have the potential to accelerate and
transform this effort, enabling rapid, large scale search and identification of effective candidates for
therapeutics and potentially transform our healthcare system from drug discovery to patient diagnos-
tics and monitoring. To translate this potential to success, transdisciplinary research in computational
and life sciences is needed. The PhD thesis proposal is indeed in the context of AI for Healthcare.

Data and Decision Fusion. The aim of this thesis proposal is to design solutions for data and
decision fusion in healthcare systems. Data fusion is the process of integrating multiple data sources
to generate more accurate information than that provided by any individual data source. Data fusion
resolves conflicts from different data sources [DN09, DBS15] by identiying the best values among the
conflicting ones. Although the problem is a pretty old one [LPL+08], it still receives a lot of attention
from academia [BBM18, MTSP20]. On the other hand, decision fusion aims to fuse the decisions of
various classifiers and getting an effective outcome.

Traditional data fusion techniques are based on probabilistic models [MJYP20]. Recently, machine
learning models are becoming essential to analyze data or to predict critical events such as a disease
or a stroke. Recently, several lines of work have addressed data fusion and decision fusion for health
prediction of COVID-19 patients [GIH+22, DNS+21, HLC+22, KVW+17]. For example, in [GIH+22],
a decision fusion method that combines three classifiers (random forest, gradient boosting, and extreme
gradient) is proposed in order to improve the prediction of the COVID-19 patient health for early
monitoring and efficient treatment.

Uncertainty Quantification. However, the main challenges of designing AI-based solutions for
critical healthcare decisions are related to the lack of reliable annotated data (and the need of manual
annotation for training the ML models) and also to the uncertainty quantification [Gal16].

High-stake decision processes require both robust methods and the ability to quantify uncertainty
of predictive machine learning approaches to minimize the risks and provide the required scientific
rigor. Nevertheless, traditional machine learning methods such as deep learning have difficulties in
explaining their outputs, in enforcing physical/medical constraints, and in handling small noisy data
sets [CN20]. Medical records or health monitoring systems for instance, may offer limited or low-quality
data, ground truth is regularly unknown, benchmark data sets are conventionally rare, and finally,
their problems usually have unknown terms and parameters. Despite the progress of incorporating
uncertainty quantification techniques into recent approches, they are still underused for various reasons
[APH+20, DGK21, KYH+20]. First, they are still a developing field with many unclear concepts not
yet understood by the machine learning community [PMZ+22, HW21]. Likewise, machine learning
communities have relied on simple data sets to validate uncertainty quantification methods, and they
can only handle low-dimensional problems [RT20]. In this context, this thesis aims to develop new
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uncertainty quantification strategies for scientific machine learning for biomedical decision systems in
the line of recent contributions in this field [GT20, KWKP20].

2 Objectives

This research will be focused in designing methods for data and decision fusion with uncertainty quan-
tification in collaboration with our colleagues of the intensive care service (ICS) of APHM-Hôpitaux
de Marseille.

• In the first 6 months, the candidate has to review the state-of-the-art in the domain of data and
decision fusion based on Machine Learning and Deep Learning methods that are particularly
relevant for critical heath monitoring applications. A review of the litterature on uncertainty
quantification will be completed as well.

• At the end of the first year, solutions for resolving data inconsistencices and evaluating data
sources reliability will be proposed in order to intergate data from various monitoring devices.
Data coming from different sources may be incomplete, erroneous or out-of-date.

• During the second year, machine learning based methods for data and decision fusion will be
designed and tested over multimodal data obtained from the intensive care service. A set of
baseline methods for uncertainty quantification will be implemented and tested over the data
analysis pipelines.

• During the third year, a new method capturing all the uncertainties generated from the data
collection, data integration and data fusion to the ML-based decision will be designed, tested
and validated with real-world use cases from the APHM-Hôpitaux de Marseille services.
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