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1. Context

A major issue in classification and data analysis is to visualize simple geometrical and relational
structures between objects. Necessary for such an analysis is a similarity or a dissimilarity measure
on a set of objects. Many applied algorithmic problems ranging from archeological dating to DNA
sequencing and numerical ecology involve ordering a set of objects so that closely coupled elements
are placed near each other. The rearranged data may then speak for themselves. For example, the
classical seriation problem [10, 11] is to find a simultaneous ordering of the rows and the columns
of the dissimilarity matrix with the objective of revealing an underlying one-dimensional structure,
i.e., large values should be concentrated around the main diagonal as closely as possible, whereas
small values should fall as far from it as possible. This goal is best achieved by considering the
so-called Robinson property [17]. A dissimilarity matrix is said to have this property if its values
increase monotonically in the rows and the columns when moving away from the main diagonal in
both directions. Seriation is of importance in archeological dating [10,11,17], clustering hypertext
orderings [2], sparse matrix ordering [1], DNA sequencing [14], and matrix visualization methods.

The most common methods for clustering provide a visual display of data in the hierarchical
form of dendrograms. Dissimilarities which are in perfect agreement with dendrograms satisfy
the Robinson property and are best known under the name of ultrametrics. Generalizing the
correspondence between ultrametrics and dendrograms, it has been shown in [7] and [8] that there
exists a one-to-one correspondence between the Robinson dissimilarities and pyramids. Analogously
to dendrograms, the objects belonging to a single cluster in a pyramid appear in consecutive order
in the Robinsonian matrix, however in pyramids two clusters may overlap.

Let X be a set of n elements to sequence, endowed with a dissimilarity function that reflects the
desire for two elements to be near or far from each other in the sequence. Recall that a dissimilarity
is a symmetric function d from X2 to the nonnegative real numbers and vanishing on the diagonal,
i.e. d(x, y) = d(y, x) ≥ 0 and d(x, y) = 0 if and only if x = y. We call d(x, y) the distance between
the objects x, y ∈ X. If d satisfies, in addition, the triangle inequality d(x, y) ≤ d(x, z) + d(z, y) for
all x, y, z ∈ X, then d is called a metric. A dissimilarity d and a total order ≺ on a set X are said
to be compatible if x ≺ z ≺ y implies that d(x, y) ≥ max{d(x, z), d(z, y)}. A dissimilarity d on X is
said to be Robinsonian if it admits a compatible order. Equivalently, d is Robinsonian if its matrix
can be symmetrically permuted so that its elements do not decrease when moving away from the
main diagonal along any row or column. Such a matrix is called Robinson or linear.

Due to their importance, several algorithms have been proposed to recognize Robinson
(dis)similarities. Atkins et al. [1] showed that if S is a Robinson similarity matrix, then the
coordinates of the eigenvector of its smallest nonzero eigenvalue of the Laplacian of S constitute a
monotone sequence of numbers. They use this result and PQ-trees to design an algorithm of com-
plexity O(nT (n) + n2 log n) to recognize if a similarity matrix of size n× n is pre-Robinson, where
T (n) is the complexity of computing the respective eigenvector. Mirkin and Rodin [14] describe
an O(n4) algorithm for testing if a dissimilarity d on n points is Robinsonian. For this, they build
up the hypergraph of all balls of d and test using the PQ-tree algorithm if this hypergraph is an
interval hypergraph. A simple divide-and-conquer O(n3)-time algorithm for the same recognition
problem has been designed in [4]. An O(n2 log n) time algorithm was proposed in [12] and [19].



Finally, Préa and Fortin [13] presented an optimal O(n2) algorithm, using the algorithm of comput-
ing the first PQ-tree, which they update throughout the algorithm. Finally, [5] presented a factor
16 approximation algorithm for `∞-best fitting a dissimilarity by a Robinson dissimilarity.

2. Randomized approach

The transformation of a dissimilarity matrix into a Robinson (monotone) matrix, by ordering
its rows and the columns, can be viewed as the 2-dimensional version of the classical algorithmic
problem of sorting of n numbers. Quicksort is the most practical sorting algorithm. It uses the
divide-and-conquer paradigm and perform a partition of the current list into three parts with respect
to a randomly chosen pivot : the elements less or equal the pivot, the pivot, and the elements larger
than the pivot. The main tool in the complexity analysis of Quicksort is the estimation of the
probability that two elements are compared by the algorithm. One important thing is that a
randomly chosen element has probability 1

2 to be a good pivot, i.e., to provide a balanced partition.
All this analysis works, if the input array is a random permutation of the input elements.

The divide-and-conquer algorithm of [4] selects as a pivot a special pair of points and partitions
the set X into five parts. It is not clear how to perform a partition of X into a constant number of
parts with respect to pivot consisting of a randomly chosen (1) element, (2) pair of elements, or (3)
constant number of elements. What will be a good pivot in each of these cases? How to compute
the probability that two entries of the distance matrix of X will be compared?

Therefore, the main goal will be to try to extend the Quicksort algorithm and its analysis to the
problem of computation of a compatible order of a Robinsonian dissimilarity. The second goal is to
use the Ehrenfest model to find a given compatible order of a Robinson martix. For this, consider
a Markov chain with n(n − 1)/2 states, where the final state correspond to a desired compatible

order ≺∗ and state i correspond to all total orders ≺ which differs from ≺∗ by exactly n(n−1)
2 − i

inversions. The transitions correspond to inversions. The goal will be to evaluate the cover time of
this Markov chain. If this approach to finding any compatible order will work, it will be interesting
to apply this approach to other problems, in particular to approximation problems.

3. Extensions

3.1. Reconstruction problem. In computational molecular biology, the aim of restriction site
mapping is to locate the restriction sites of a given enzyme on a given DNA molecule. Determining
the location of sites from restriction site data is a difficult algorithmic problem; see [16] for the
introduction and discussion of many approaches. Partial digest is an approach to the restriction
site mapping is an approach introduced by Skiena and Sundaram [20] and is based on the theory of
homeometric sets on the line of Rosenblatt and Seymour [18]. Two noncongruent n-point sets of the
line R are homeometric if the multisets of

(
n
2

)
distances they determine are the same. The partial

digest approach of [20] of reconstructing n-point sets of R from the multisets of
(
n
2

)
interpoint

distances. Skiena and Sundaram [20] proposed practical algorithms for reconstructing sets from
noisy interpoint distances, but it was shown in [21] that such algorithms are exponential. Thus the
status of the partial digest problem is still unresolved (see also [15] for the labeled version and a
polynomial time algorithm for this version).

Since Robinson dissimilarities generalize distance martices of points on the line, in the PhD the-
sis, we plan investigate the homeometric sets in Robinson matrices and the reconstruction problem
from interpoint distances for Robinson dissimilarities. For homeometric sets, we are planning to
investigate lower and upper bounds for the maximum possible number of mutually noncongruent
and homeometric Robinson dissimilarities on n points. The same type of questions can be raised
for ultrametrics, for-tree metrics or for tree-Robinsonian dissimilarities. For the reconstruction
problem, we intend to develop algorithms solving this problem, in particular, extending the algo-
rithm of [20]. it should be emphasized that even if the reconstruction problem for Robinsonian
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dissimilarities generalize the reconstruction problem for the line, in general the first problem may
have much more solutions than the second one and thus maybe easier. A very challenging goal
would be to extend the approximation algorithms of [5] and [9] to solve the reconstruction problem
with noisy interpoint distances (for the line or for Robinsonian matrices).

3.2. Robinson cubes. Warrens and Heiser [22] generalized the notion of Robinson matrix to 3-
dimensions and they defined two types of Robinson cubes and regular Robinson cubes; . A cube is a
n×n×n array C = (cijk. Whereas a matrix is characterized by rows and columns, a cube consists
of rows, columns, and tubes. A cube C satisfies (a) the three-way symmetry if cijk = cπ(i)π(j)π(k) for
any permutation π of i, j, k and (b) the diagonal-plane equality if biji = bijj . A Robinson cube is a
cube B satisfying conditions (a), (b) and (c) such that the lowest entries in each row, column, and
tube of B are on the main diagonal (elements biii) and moving away from this diagonal, the entries
neither decrease. A Robinson cube B is regular if (d) all matrices, which are formed by cutting
the cube perpendicularly, are Robinson dissimilarities. The paper [22] presented several examples
of (regular) Robinson cubes showing that they appear naturally in statistics and data analysis, but
do not provided any algorithm of their recognition.

It is an interesting and challenging algorithmic question to design algorithms for recognizing
(regular) Robinson cubes, i.e., algorithms for permuting rows, columns, and tubes of a cube satis-
fying the conditions (a) and (b) to a cube also satisfying the conditions (c) and (d), or establishing
that such a transformation does not exist. The natural way would be to try to extend the known
methods (described above) for recognizing Robinson dissimilarities.
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